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ABSTRACT

In this project, we study quantum teleportation protocols with noisy re-

sources using variational quantum optimization (VQO). Quantum telepor-

tation is a fundamental quantum information-theoretic task in which Alice

aims to teleport an unknown quantum state to Bob using a shared entangle-

ment resource and classical communication. A teleportation protocol con-

sists of a measurement implemented by Alice, a classical channel transmitting

the measurement outcome to Bob, and a set of correction operations imple-

mented by Bob depending on the measurement outcome. For a maximally

entangled state, the well-known standard teleportation protocol by Bennett

et al. [1] defined in terms of a Bell measurement and Pauli corrections gives

a perfect protocol. However, in the presence of noise such a perfect telepor-

tation protocol is generally impossible, and instead one aims to maximize

the so-called teleportation fidelity of a protocol by finding suitable measure-

ments and correction operations. Here, we use a VQO ansatz simulated in

the PennyLane framework in order to find teleportation protocols achieving

non-classical fidelities for noisy entangled resource states. We carry out a

detailed numerical study of teleportation protocols with both unitary and

noisy elements for the class of Badziag et. al states, which are mixtures of

two weighted Bell states. Furthermore, we examine qutrit-Werner states and

ququart-Werner states, representing a spectrum of mixtures of fully mixed

and maximally entangled states within a three-level or four-level quantum

system, for usefulness as entangled resources in teleportation protocols.

Subject Keywords: Variational Quantum Optimization (VQO); Quan-

tum Network Variational Optimization (qNetVO); Quantum Optimization;

Quantum Teleportation; Dense Coding; Noisy Quantum Channels
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INTRODUCTION

1.1 Quantum teleportation

Quantum teleportation is one of the most important protocols in quantum

information theory, offering a novel method for transmitting quantum infor-

mation. This protocol is the backbone of several far-reaching applications,

including long-distance entanglement distribution through repeaters [2], se-

cret key distribution for quantum cryptography [3], fusion-based quantum

computing [4], secret sharing [5], entanglement swapping [2], supplanting

conventional connections in large quantum computers, universal distributed

quantum computation, and the quantum internet [6].

At its core, a teleportation protocol dismantles an unknown quantum state

into classical information and entanglement, a nonclassical correlation, al-

lowing for its reconstruction over a distance. Quantum teleportation demon-

strates the operational interchangeability of one communication primitive, a

quantum channel, with two other communication primitives, entanglement

and a classical channel. Essentially, quantum teleportation emulates quan-

Figure 1.1: A teleportation protocol begins with two parties, Alice and Bob,
where Alice wishes to transmit the unknown state |ϕ⟩ to Bob. In order to
perform teleportation, Alice and Bob must share a bipartite quantum state ρAB

which is entangled.
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Figure 1.2: Teleportation highlights the relationship between one
communication primitive, transmission of quantum information, and two others,
entanglement and transmission of classical information. As part of the protocol,
Alice can disassemble her unknown quantum state |ϕ⟩ into classical information i
and nonclassical correlations from ρAB.

Figure 1.3: Alice’s quantum state |ϕ⟩ is deposited in Bob’s quantum particle at
the end of teleportation. Any entanglement between Alice and Bob is gone, and
Alice’s particles retain no trace of any information about |ϕ⟩. The protocol is
limited by the speed of light because Bob must apply a correction operation
based on the classical message i. If Bob does not wait for Alice’s classical
message and use it, then he instead obtains the maximally mixed state.

tum communication through the consumption of shared entanglement, ap-

plication of local quantum operations, and use of classical communication.

Using teleportation, two parties Alice and Bob spend the entanglement

of a shared quantum resource to reliably transmit an unknown quantum

state across physically distant quantum systems. Despite the name quantum

teleportation, nothing is literally being “teleported.” The quantum state is

decomposed into classical information and non-classical correlations by joint

measurement with Alice’s part of the entangled resource, the measurement

results are communicated from Alice to Bob, and the quantum state is recre-

ated through state transformation. At no point in the protocol is the no-

cloning theorem violated, that is, the unknown quantum state is not copied

or doubled. In section 2.1, we discuss the theory of teleportation and delve
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Figure 1.4: Satellites can help connect distant local quantum networks. Ground
stations utilize quantum teleportation to send quantum information to satellites.
This is achieved by exploiting entanglement between the ground station and
satellite. An encoding measurement is performed at the ground station, and the
unknown quantum state can be recreated at the satellite using classical
information sent from the ground. Satellites take advantage of the low-error,
low-decoherence environment provided by space to communicate quantum
information directly with one another.

into the equivalence of communication primitives.

The anticipation for advanced applications of quantum communication

is growing. For example, BT and Toshiba’s pioneering quantum-secured

metro network [7] currently showcases a secure link between a large bank’s

headquarters and a nearby data centre using quantum key distribution. The

commercial viability of quantum networking is unknown but promising, and

it is not far-fetched to expect more complex activities in the future.

Quantum teleportation plays a key role in quantum communication as

systems scale. The quantum-secured metro network in London utilizes fibre

optic cables. However, strong attenuation factors in fibre optic cables prevent

the reliable transmission of quantum information over long distances. Classi-

cal information can be duplicated to statistically guarantee reliable communi-

cation across fibre optic cables, but the no-cloning theorem of quantum infor-

mation prevents the duplication of quantum information. Thus, the quantum

teleportation protocol emerges as a natural solution for sending quantum in-

formation across larger distances [2]. Previous work has already implemented

ground-to-satellite quantum teleportation in hopes for a large-scale quantum

network [8, 9] 1.4. Industry is already adopting these techniques, as Toshiba

is building a terrestrial QKD solution with satellite technology [10].

For a maximally entangled shared resource, the standard teleportation pro-

tocol by Bennett et al. [1] defined in terms of a Bell measurement and Pauli

corrections gives a perfect protocol with flawless information transfer. In the
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presence of noise such a perfect teleportation protocol is general impossible,

and instead one aims to maximize the so-called teleportation fidelity of a

protocol by finding suitable measurements and correction operations. The

average fidelity of a quantum teleportation protocol is the average overlap

between target and teleported states, and is the quantity we seek to maximize

in real teleportation protocols.

A common noisy experimental scenario is when the entangled resource

state is a Werner state produced by the action of a depolarizing channel acting

on one part of a singlet state, a maximally entangled state. In that case, the

standard teleportation protocol is no longer optimal. This work efficiently

discovers high-dimensional Werner states for which a teleportation protocol

with non-classical fidelity exists. Furthermore, this work parameterizes the

quantum teleportation protocol to efficiently optimize teleportation in the

presence of any noise, improving the quality of quantum communication.

1.2 Qudits

The most popular unit of quantum information is the qubit, a 2-level quan-

tum system. However, d-level quantum systems known as qudits have re-

cently garnered attention for their increased information capacity [11] and

potential for robust quantum communication [12].

The entanglement properties of a system with two qubits is more-or-less

well understood. Necessary and sufficient criterion for identifying entangle-

ment in qubit-qubit and even qubit-qutrit systems is computationally simple

[13, 14]. However, there is not yet any such characterization of entanglement

for much larger systems. Uncovering the utility of d-level bipartite quan-

tum systems for entanglement-requiring tasks like teleportation is a rich and

complicated question.

This work focuses on optimizing teleportation protocols with various fami-

lies of noisy entangled resource states, including 3-dimensional and 4-dimensional

qudits (qutrits and ququarts). We numerically demonstrate the range of

states for which certain families of states provide a quantum advantage for

teleportation at different dimensions. This work develops and utilizes an

efficient framework for characterizing a quantum state’s utility for noisy tele-

portation protocols.
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(a) Qubit, a 2-level quantum
system

(b) Qutrit, a 3-level quan-
tum system

(c) Qudit, a d-level quantum system

Figure 1.5: Units of quantum information

1.3 Variational quantum optimization

Variational quantum optimization (VQO) is a technique for splitting large

computational loads between classical and quantum computers for optimiza-

tion tasks. This technique is applicable to the current NISQ era where avail-

able runs on large quantum computers are slim. VQO employs parameterized

quantum circuits and optimizes them according to a problem-specific cost

function. Classical computational feedback is compute the objective func-

tion in a feedback loop. We use VQO to optimize teleportation protocols

and identify quantum states which would provide a nonclassical advantage

for teleportation.

1.4 Main contribution

The main contributions of this paper include

• Using the correspondence between teleportation and dense coding to

efficiently optimize teleportation protocols given a noisy entangled re-

source.
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• Carrying out a detailed numerical study of teleportation protocols with

both unitary and noisy elements for the class of Bazdiag et. al states,

which are mixtures of two weighted Bell states.

• Efficient discovery of 3-level and 4-level Werner states which are useful

for teleportation through a surprisingly efficient calculation of the re-

duction criterion for versions of these states that are locally processed

on only one side.
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THEORETICAL BACKGROUND

2.1 Teleportation

Teleportation simulates a quantum channel with communication primitives

which are better suited for long-distance communication: shared entangle-

ment and a classical channel. A general teleportation protocol from Alice to

Bob consists of:

• An entangled state, ρAB

• Encoding measurement, {Πi}

• Decoding state transformation, {Di}

2.1.1 Teleporting qubits

An unknown qubit state |ϕ⟩ can be dissassembled into, then later recon-

structed from, purely classical information and purely nonclassical Einstein-

Podolsky-Rosen (EPR) correlations [1].

Suppose that Alice wishes to transfer the state |ϕ⟩ of her qubit (particle

1) to Bob. The following protocol allows Alice to flawlessly transmit |ϕ⟩ to
Bob without a physical quantum connection.

In the standard teleportation protocol for qubits, the entangled resource

state is an EPR singlet state. This is a maximally entangled bipartite state

of qubits. One EPR particle (particle 2) is given to Alice, while the other

(particle 3) is given to Bob.

ρAB = |Ψ(−)
23 ⟩ = 1√

2
(|02⟩|13⟩ − |12⟩|03⟩)
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The encoding measurement entangles the unknown quantum particle |ϕ1⟩
with the entangled pair. The encoding measurement is performed in the bell

operator basis, given by |Ψ(±)
12 ⟩ = 1√

2
(|0⟩|1⟩±|1⟩|0⟩) and |Φ(±)

12 ⟩ = 1√
2
(|0⟩|0⟩±

|1⟩|1⟩).
{Πi} = {|Ψ(−)⟩, |Ψ(+)⟩, |Φ(−)⟩ |Φ(+)⟩}

Note that |ϕ1⟩ = α|0⟩+ β|1⟩ with α2 + β2 = 1. The complete state of the

three particles before Alice’s measurement is then

|Ψ123⟩ = |ϕ1⟩ ⊗ |Ψ(−)
23 ⟩ = α√

2
(|01⟩|02⟩|13⟩ − |01⟩|12⟩|03⟩) +

β√
2
(|11⟩|02⟩|13⟩ − |11⟩|12⟩|03⟩)

=
1

2

[
|Ψ(−)

12 ⟩(−α|03⟩ − β|13⟩) + |Ψ(+)
12 ⟩(−α|03⟩+ β|13⟩)

+|Φ(−)
12 ⟩(α|13⟩+ β|03⟩) + |Φ(+)

12 ⟩(α|13⟩ − β|03⟩)
]

Thus, the decoding state transformation is a simple function of Alice’s

measurement outcome. Measuring |Ψ(−)
12 ⟩ suggests that Bob’s state has been

projected into (−α|0⟩ − β|1⟩). In this case, Bob’s state is the same as |ϕ⟩
aside from an irrelevant phase factor, so Alice’s state |ϕ⟩ has already been

deposited into Bob’s qubit. If Alice measures the |Ψ+
12⟩ state, then Bob’s

state has been projected into (−α|0⟩ + β|1⟩), which can be corrected by

applying the σ3 operator. Similarly, if Alice measures |Φ(−)
12 ⟩ or |Φ(+)

12 ⟩, Bob
must apply σ1 or σ3σ1 = iσ2, respectively.

{Di} = {I, σ3, σ1, iσ2}

If Bob applies the state transformation Di based on Alice’s measurement

result i ∈ [4], then he should always obtain a perfect replica of |ϕ⟩. Alice’s

two particles are left in the state Πi, without any trace of the original state

|ϕ⟩.
Note that if Bob applies a correction operator before receiving the classical

message from Alice, he yields a random mixture of the four possible states.

This is the maximally mixed state, which offers no information about |ϕ⟩.
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2.1.2 Teleporting qudits

The qubit teleportation protocol from section 2.1 is perfect in terms of ac-

curate quantum information transfer. Qubits are 2-dimensional quantum

systems, while qudits are d-dimensional quantum systems. A perfect tele-

portation protocol for transfering information encoded in qudits is a straight-

forward generalization of the qubit protocol [15].

This protocol leverages a pair of N-state particles in a completely entangled

state as the entangled resource.

ρAB =
∑
j

|j⟩ ⊗ |j⟩√
N

As before, Alice performs a joint measurement on particles 1 and 2. One

such measurement is the one whose eigenstates are

|ψnm⟩ =
∑
j

e2πijn/N |j⟩ ⊗ |(j +m)modN⟩√
N

Once Bob learns from Alice that she has obtained the result nm, he can

apply the unitary correction operator

Dnm =
∑
k

e2πikn/N |k⟩ ⊗ ⟨(k +m)modN |

That transformation brings Bob’s particle to the original state of Alice’s

particle 1, and the teleportation is complete.

2.1.3 Teleportation fidelity

The fidelity f of a teleportation protocol describes the overlap between the

teleported state and the original state. We would like to maximize this

quantity for reliable quantum communication.

A teleportation protocol (ρAB, {Πi}, {Di}) can teleport a state σC′ in quan-

tum system C ′ into the particle(s) holding Bob’s share of the entangled re-

source ρAB in quantum system C. Bob’s decoding operation in the protocol

can be noted as a quantum channel Di : B → C. Hence, the end-to-end

teleportation protocol implements a quantum channel Λ : C ′ → C. Let Φ+
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be a maximally entangled bipartite state of dimension |C| × |C|. The noise

in the teleportation channel Λ is typically measured using the entanglement

fidelity [16]

F := tr[Φ+(id⊗ Λ)(Φ+)]

We are interested in average teleportation fidelity, which describes the abil-

ity of a teleportation protocol to accurately teleport any arbitrary unknown

quantum state. The average teleportation fidelity f :=
∫
dψ⟨ψ|Λ(ψ)|ψ⟩ is

related to Entanglement fidelity F in the following way [16]

f =
Fd+ 1

d+ 1

In contrast, the maximum teleportation fidelity without leveraging any

nonclassical correlations is given by [17]

fcl =
2

1 + d

Hence, a teleportation protocol requires states with F > 1
d
in order to do

better than classical techniques.

2.2 Dense coding

Dense coding is the dual problem to quantum teleportation. In a dense

coding scheme, Bob encodes a classical message in a quantum state which

Alice decodes with a measurement. The same elements of teleportation can

be used to define a dense coding protocol:

• An entangled state, ρBA

• Encoding state transformation, {Di}

• Decoding measurement, {Πi}

Instead of simulating a quantum channel with 2-bits of classical informa-

tion and a purely nonclassical resource state, we can simulate a 2-bit classical

channel with a 1-qubit quantum channel.
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Recall the standard teleportation protocol for qubits:

(ρAB, {Πi}, {Di}) = (|Ψ(−)⟩, {|Ψ(−)⟩, |Ψ(+)⟩, |Φ(−)⟩ |Φ(+)⟩}, {I, σ3, σ1, iσ2})

Bob can encode classical information i ∈ [4] by applying Di to the B-part

of |ρB⟩. For example, i = 4 is encoded with D4 = iσ2 being applied to |ρB⟩ so
that the resultant entangled state becomes Π4 = |Φ(+)⟩. The joint state can

then be measured with {Πi} to extract the encoded classical information. It

is assumed that Bob and Alice share a noiseless quantum channel so that

Alice can recieve Bob’s share of the entangled resource towards the end of

the protocol.

If the entangled resource utilized for dense coding is a d-dimensional com-

pletely entangled qudit state, then Bob can reliably encode a 2log(d)-bit

classical message. This dense coding protocol uses the same data as the qu-

dit teleportation protocol 2.1.2. Bob encodes the message i ∈ [2log(d)] by

applying the corresponding encoding state transformation Di into his sys-

tem B of the shared state ρAB. Bob transmits his share of the entangled

resource to Alice using a noiseless quantum channel, and Alice can decode

the d-dimensional message by applying the measurement {Πi}.
The classical channel resultant from dense coding is characterized by the

transition probabilities

p(j|i) = tr(Πj
AB(idA ⊗Dj

B)ρAB)

The quality of a dense coding scheme is characterized by its success prob-

ability

psucc =
1

N

N∑
i=1

p(i|i)

This success probability is perfect for noiseless dense coding protocols using

a maximally entangled resource. In noisy settings, the success probability is

limited by the distillability of the shared entangled resource.

Success probability is connected to teleportation fidelity in the follow-

ing way. Let (ρAB, {Πi}, {Di}) be a |C|-dimensional teleportation protocol.

Then the following relation holds [16]:

F = |C|−2
∑

tr(Πi
ACw

i
AC) = N |C|−2psucc (2.1)
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2.3 Badziag et al. states

The class of Badziag et al. states demonstrate that interactions between

resource states and the local environment can enhance the fidelity of tele-

portation protocols [17]. A description of two-qubit states in this family

follows.

Let HA = C2 = HB and x, y, p ∈ [0, 1] be arbitrary. Consider the pure

states

|ψ1⟩AB =
√
x|0⟩A ⊗ |0⟩B −

√
1− x|1⟩A ⊗ |1⟩B

|ψ2⟩AB =
√
y|0⟩A ⊗ |1⟩B −

√
1− y|1⟩A ⊗ |0⟩B.

The resource state ρAB for our teleportation/dense coding protocol is a mix-

ture of ψ1 and ψ2:

ρAB = p|ψ1⟩⟨ψ1|AB + (1− p)|ψ2⟩⟨ψ2|AB

=


px 0 0 −pcx
0 (1− p)y −(1− p)cy 0

0 −(1− p)cy (1− p)(1− y) 0

−pcx 0 0 p(1− x),


where cx =

√
x(1− x) and cy =

√
y(1− y). This density matrix is purified

by the following pure state |ϕρ⟩ABR on AB and a third qubit R:

|ϕρ⟩ABR =
√
p|ψ1⟩AB ⊗ |0⟩R +

√
1− p|ψ2⟩AB ⊗ |1⟩R

=
[√

px, 0, 0,
√

(1− p)y, 0,−
√

(1− p)(1− y),−
√
p(1− x), 0

]T

2.4 Werner states

Another resource state of interest for teleportation protocols is the family

of Werner states [18]. These states emerge from depolarizing noise applied

to one part of a maximally entangled bipartite quantum state. A Werner

state is an incoherent combination of a pure maximally entangled state and

completely mixed state. A description of qudit-Werner states follows.

Let HA = Cd = HB and {|0⟩, |1⟩, |2⟩, . . . , |d⟩} be the computational basis

12



for a qudit. For 0 ≤ i ≤ j ≤ d we define the states

|ψij⟩AB =
1√
d
(|i⟩A|j⟩B + |j⟩A|i⟩B),

and for 0 ≤ k < l ≤ d we define

|ϕkl⟩AB =
1√
d
(|k⟩A|l⟩B − |l⟩A|k⟩B).

The orthonormal sets of vectors

Bs = {|ψij⟩AB : 0 ≤ i ≤ j ≤ d}

Ba = {|ϕkl⟩AB : 0 ≤ k < l ≤ d}

span the symmetric subspace Sym2(Cd) and the antisymmetric subspace
∧2(Cd),

respectively. The projectors Πs and Πa onto these spaces are given by

Πs =
∑
χ∈Bs

|χ⟩⟨χ|AB

Πa =
∑
χ∈Ba

|χ⟩⟨χ|AB.

We have dimΠs = dimSym2(Cd) = d(d+1)
2

and dimΠa = dim
∧2(Cd) =

d(d−1)
2

. The qudit-Werner state WAB(p) with p ∈ [0, 1] is defined as

WAB(p) =
2p

d(d+ 1)
Πs +

2(1− p)

d(d− 1)
Πa,

and purified for example by the pure state

|ϕW
p ⟩ =

√
2p

d(d+ 1)

∑
|χ⟩∈Bs

|χ⟩ ⊗ |χ⟩+

√
2(1− p)

d(d− 1)

∑
|χ⟩∈Ba

|χ⟩ ⊗ |χ⟩.

2.5 Reduction criterion

A bipartite state ρAB can give rise to a nonclassical teleportation fidelity if

and only if there is a locally processed version of ρAB violating the reduction

criterion for seperability [16].
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The reduction criterion is given by the following conditions

ρA ⊗ I− ρAB ≥ 0, I⊗ ρB − ρAB ≥ 0

Note that the marginals of a Werner state are completely mixed:

ρA = TrB(WAB(p)) = TrB

(
2p

d(d+ 1)
Πs +

2(1− p)

d(d− 1)
Πa

)
=

2p

d(d+ 1)

d+ 1

2
IA +

2(1− p)

d(d− 1)

d− 1

2
IA =

1

d
IA.

Accordingly, the reduction criterion for a version of a Werner state which

has been locally processed on only one side simplifies to

1

d
IAB − ρAB ≥ 0

Hence, a version of Werner state which has been locally processed on only

one side violates the reduction criterion if its maximal eigenvalue is larger

than 1
d
.
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DESIGN

Our research focuses on finding good teleportation protocols for noisy quan-

tum resources. A good teleportation protocol is one in which the teleported

state approximates the original state as much as possible. Additionally, we

provide a methodology for examining quantum states which may or may not

be suitable resources for teleportation.

First, we describe the quantum circuit model. We will later optimize quan-

tum circuits to maximize the fidelity of teleportation protocols and discover

good quantum resources.

Quantum circuits describe a run of quantum computation. They are gen-

erally composed of wires, unitary operators, and measurements. A wire

represents a unit of quantum computation (e.g., a qubit), unitary operators

are state transformations, and measurement operators collapse the quantum

state to return a classical result. The circuits are read from left to right. An

example is given in figure 3.1.

Figure 3.1: A quantum circuit with two quantum gates. The circuit qubits are
initialized in the |0⟩ state. The unitary U1 is applied to qubit 1 and U2 is applied
to the joint state. At the end of the circuit, the qubits are measured. The circuit
is read from left to right.
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3.1 Optimizing teleportation protocols via dense

coding

Variational quantum optimization parameterizes quantum circuit elements

and optimizes them according to a cost function, similar to a neural net.

We efficiently optimize quantum circuits for teleportation by exploiting the

duality of teleportation and dense coding [16] to reduce circuit size.

An arbitrary teleportation protocol consists of an entangled state ρAB,

encoding measurement {Πi}, and decoding state transformation {Di}. We

optimize a teleportation protocol for any fixed resource state ρAB. Hence,

the components of the protocol which must be parameterized for optimiza-

tion are only Alice’s encoding measurement {Πi} and Bob’s decoding state

transformation {Di}. Figure 3.3 demonstrates the parameterized protocol

in a practical and optimization-friendly manner. A key design choice for the

optimization is fixing the teleporting state. The fidelity at which a telepor-

tation protocol transmits half of a maximally entangled state is equivalent

to the average fidelity of the protocol over all quantum states [19]. Hence,

we can drastically reduce the state space of the optimization by forming a

maximally entangled singlet state between an auxiliary wire and the wire to

be teleported.

However, the circuit in figure 3.3 (a) is quite large and complex. An aux-

iliary wire is used to decrease the state space of exploration, but contributes

to increasing the width of the circuit. The circuit can be simplified by ex-

ploiting the duality of teleportation and dense coding protocols [16]. The

quantum circuit describing the same entangled state ρAB, now with Bob’s

encoding state transformation {Di} and Alice’s decoding measurement {Πi},
uses the same parameters from the teleportation protocol with a different in-

terpretation. The dual circuit is shown in figure 3.3 (b) and can be easily

optimized. In order to optimize over more general measurements (given by

a POVM) and noisy decoding operations, we introduce additional wires that

enable us to describe mixed states that are purified by the extra qubits. The

dense coding circuit with auxiliary wires is shown in figure 4.1.

The fidelity of a teleportation protocol is a positive linear function of the

success probability of its dual dense coding problem 2.1. Hence, we optimize

the success probability of the dense coding circuit to indirectly optimize the

teleportation protocol. The trained weights of the circuit in figure 4.1 map
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Figure 3.2: We can optimize the circuit above with a cost function that checks
the overlap between |ϕ⟩ and the output of the bottom wire. However, the quality
of a teleportation protocol is given by its average fidelity, that is the average
overlap between an arbitrary state and the teleported state. Hence, this circuit
requires high sampling, as we must sample a significant number of quantum
states and optimize the teleportation on average for all of them.

to an optimized teleportation protocol for a noisy entangled resource.

3.2 Examination of qutrit-Werner states

Werner states naturally emerge from depolarizing noise applied to one part

of singlet state, a maximally entangled state. Werner states are a family of

quantum states with U ⊗ U unitary symmetry that makes them useful to

study entanglement, distillation and nonlocality. [18, 20]The usefulness of

d-dimensional Werner states for telportation is not generally known.

In this section, we describe a methodology to study d-dimensional Werner

states using qubit quantum circuit simulation. Operations such as ’Arbi-

traryUnitary’ which are useful for circuit optimization are not yet supported

for qutrit or qudit circuits. Hence, we encode qutrit-Werner states into a

qubit circuit.

Consider the purification of an arbitrary qutrit-qutrit Werner state

|ϕW
p ⟩ =

√
p

6

∑
|χ⟩∈Bs

|χ⟩ ⊗ |χ⟩+
√

1− p

3

∑
|χ⟩∈Ba

|χ⟩ ⊗ |χ⟩

|ϕW
p ⟩ is a sparse length-81 vector with non-zero values precisely in indices

0, 10, 12, 20, 24, 28, 30, 40, 50, 52, 56, 60, 68, 70, and 80.
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(a) The fidelity of teleporting part of a singlet
state is equal to the average fidelity of teleport-
ing any state.

(b) This dense coding circuit has the same tele-
portation protocol parameters (ρAB , {Πi}, Di)
as (a). Optimizing for the success probability
of this circuit is equivalent to optimizing (a).

Figure 3.3: Circuits that optimize the average fidelity of a teleportation
protocol with reduced sampling compared to 3.2

We use the following encoding from 1 qutrit to 2 qubits.

F :

|0⟩ → |00⟩

|1⟩ → |01⟩

|2⟩ → |11⟩

Any encoding of the three qutrit states into three of four bases of two qubits

is mathematically equivalent for optimization, but the choice can potentially

impact convergence properties.

Given the qutrit state vector of |ϕW
p ⟩, we keep the vector values and

modify the indices (base 10) by the formula F(index (base 3)) (base 10).

For example, index 10 is first transformed to base 3 (1010 → 01013), then

transformed by F (F(0101) = 00010001), and finally converted to base 10

(000100012 = 1710). The qutrit-Werner state encoding into qubits is com-

pleted with the initialization of a length-256 vector with 15 non-zero values

at indices 0, 17, 20, 51, 60, 65, 68, 85, 119, 125, 195, 204, 215, 221, 255.

Note that ququart-Werner states do not require reindexing because the
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Figure 3.4: This circuit applies local processing to the Bob-side of a Werner
state. A resource state state ρAB gives rise to a nonclassical teleportation fidelity
if there is a locally processed version of itself violating the reduction criterion,
ρA ⊗ IB − ρAB ≥ 0. A Werner state’s marginals are completely mixed, so the
reduction criterion simplifies to 1

dIAB − ρAB ≥ 0. We optimize the maximum
eigenvalue of a Werner state with local processing on Bob’s side. Any version of
a Werner state which results from local processing on one side can be optimized
for reduction criterion violation by increasing the maximal eigenvalue of the
bipartite state.

dimensionality of two qubits is already equal to that of one ququart.

Given the embedding, we can define a quantum circuit to classify the

usefulness of a d-level Werner state for teleportation. As shown in section

2.5, the cost function will be the maximal eigenvalue of Alice and Bob’s

final joint state. Surpassing a maximum eigenvalue of 1
d
indicates violation

of the reduction criterion, which indicates the resource state gives rise to

nonclasical teleportation fidelity [16]. The corresponding quantum circuit

for qutrit-Werner states is shown in figure 4.4.
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EXPERIMENTS

4.1 Automatic optimization of teleportation protocols

We use Pennylane [21] and the QNETVO software package [22] to implement

our optimization strategy. Specifically, we paramaterize operators and use

gradient descent to maximize the fidelity of the protocol, seen in 4.1. Our

coding framework, QNETVO, provides a way to describe a protocol in a

quantum network and optimize over it.

We optimize the success probability of the dense coding protocol with

and without additional auxiliary wires which represent a local environment.

Non-classical teleportation advantages which beat the standard teleportation

protocol are demonstrated in figures 4.2 and 4.3 with Badziag et al. resource

states. Thanks to Hani Al Majed and Palak Kotwani for collecting these

results with me in a past IBM-Illinois Discovery Accelerator project [23].

4.2 Usefulness of Werner states for teleportation

The Werner states are separable for p > 0.5, so we exclude these states. We

explore various size local environments e and different sizes of Bob’s output

state b. The circuit used is developed in 2.4 and shown in 4.4. The results

suggest that a quantum advantage for qutrit-Werner states in teleportation is

limited to p < 2
7
, agreeing with [16]. The results for qutrit-Werner states are

shown in figure 4.5. We also implement the optimization for ququart-Werner

states and discover that these states yield non-classical teleportation results

for p < 0.1875, shown in 4.6. Thanks to Yulie Arad for collecting these

results with me in a current IBM-Illinois Discovery Accelerator project.
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Figure 4.1: Dense coding circuit implementation in qNetVO. In order to
optimize over more general measurements (given by a POVM) and noisy
decoding operations, we introduce additional wires that enable us to describe
mixed states that are purified by the extra qubits. Although we have a fully
general decoding operation, our measurement requires two more auxiliary qubits
to achieve full generality. As the number of auxiliary wires increases, the number
of parameters in the circuit grows exponentially. Therefore, we set a cutoff as
indicated above, as we can achieve fairly good results without requiring more
advanced equipment than a standard laptop. In this case, the number of
parameters is 318, which is much lower than the 4158 required for the fully
general solution.

21



Figure 4.2: This plot for the Badziag et. al class of states with x = 0,

y = 3−2
√
2

4−2
√
2
reveals around p = 0.5 that we can surpass the optimal theoretical

fidelity of a protocol using a Bell measurement with our optimized noisy ansatz.

Figure 4.3: This plot for the the Badziag et. al class of states with x = 1/2,

y = 3−2
√
2

4−2
√
2
reveals around p = 0.41 that we can surpass the optimal fidelity of a

protocol using a Bell measurement with both optimized noisy and noiseless
ansätze.
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Figure 4.4: State initialization on wires 0 through 7 leaves an embedding of a
qutrit-Werner state in wires 0 through 3. A parameterized unitary operation is
applied to Bob’s part of the bipartite state and a sufficient local environment.
This circuit has the settings e = 1 and b = 1.
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(a) (b)

Figure 4.5: Qutrit-Werner states demonstrate a non-classical avantage for
teleportation when p < 2

7 . Adjusting the size of the local environment and Bob’s
output state impacts convergence but can be cleverly used to improve training
speeds. Note that the different sets of data seem to be converging to the case of
b = 1, e = 1, which was one of the least computationally expensive optimization
settings due to a minimal number of auxiliary wires. We condense the fully
general 4095 parameter solution into a 63 parameter solution with exactly the
same results by reducing e and b to 1. These results reproduce previous work [16]
with an automated technique that is easily extendable.

(a) (b)

Figure 4.6: These plots show that quqart-Werner states are useful for
teleportation for p < 0.1875. Again, a condensed 63 parameter solution (only 1
auxiliary wire and 1 output wire for Bob’s state) suffices.

24



DISCUSSION

5.1 Significance of results

We show that qutrit-Werner states are useful for teleportation for p < 2
7
.

This result agrees with other work that uses different techniques to come to

the conclusion [16]. However, there is still room for increasing this upper

bound. We only perform local processing on the B-side of the protocol.

One might find that qutrit-Werner states are useful for teleportation for

some p > 2
7
by seeing a reduction criterion violation of a version of such a

qutrit-Werner state with local processing on both parts of the bipartite state.

Techniques used in this work must be modified, as the simplification of the

reduction criterion to a maximal eigenvalue problem hinges on the marginal

of the resource state being completely mixed, which is no longer true when

both Alice and Bob perform local operations on their parts of the entangled

resource. Similarly, it might still be possible to find useful ququart-Werner

states for teleportation with p > 0.1875.

One particularly interesting result of this work is that the version of a

Werner state generated by only using one auxillary environment wire and

reducing the size of Bob’s output state yields the same results as increas-

ing the size of the environment and using Bob’s full state in the maximum

eigenvalue computation. Notably, reducing the size of the environment while

keeping Bob’s output size constant reduces the quality of the optimization.

However, reducing the environment size along with Bob’s system’s output

size yields exactly the right answer as the fully general solution. There is a

massive speedup achieved by performing this trick. This may, however, just

be a feature of Werner states or of doing local processing on only one side of

the protocol.
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(a) General goal (b) Standard teleportation protocol
simulates reliable quantum communi-
cation

(c) Reliable quantum communication
with unreliable resources

Figure 5.1: Fast teleportation protocol optimizer

5.2 Future work

• Noise models for quantum computers are currently being developed

[24]. Seeing this, it would be interesting to see quantum protocols

being adapted in real time to account for the known noise. This idea

is shown in figure 5.1.

• The stability of optimizing teleportation protocols can be further in-

creased. The optimization of 3.3 is unstable and requires multiple shots

to find non-classical teleportation protocols for a fixed resource state.

If a fast teleportation protocol optimizer is implemented in practice, it

would hopefully have better stability properties.

• Recent work has demonstrated the usefulness of a new teleportation

protocol which improves teleportation fidelity by using ancillary entan-
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glement catalytically (i.e., without depleting it) [25]. This work focused

on optimizing teleportation protocols achieving the best teleportation

fidelity when consuming a given entangled state. Future work might

include optimizing teleportation protocols when consuming a given en-

tangled state and using an arbitrary amount of entanglement catalyti-

cally.

• This work assumes that all quantum operations are of equal cost. How-

ever, this is not true in practice. In this setting, it would be interesting

to explore integrating reinforcement learning techniques for optimiza-

tion over a fixed gate set [26] or to optimize the protocol while consid-

ering the cost of different quantum operations.

• Note that the encoding measurement and decoding state transforma-

tion steps of teleportation can also introduce noise. Mitigating these

noise sources in addition to the noise of the entangled resource would

be an interesting line of work.

• It is possible to compute the maximal eigenvalue using a shallow quan-

tum circuit [27]. Hence, future work can include examination of Werner

states without evaluating the objective function classically.

• Other high-dimensional quantum states can also be examined using

the current setup for Werner states. If their marginals are completely

mixed, then the simple maximal eigenvalue optimization process con-

tinues to be effective for testing violations of the reduction criterion.

Otherwise, different techniques to optimize for violations of the reduc-

tion criterion must be discovered and employed.

• This work only performs local processing on one part of Werner states

to check for reduction criterion violations that show usefuless of these

states for teleportation. It would be interesting to see results for re-

duction criterion violations of Werner states with local processing on

both sides; however, the simplification of the reduction criterion to a

maximal eigenvalue check falls through here because the marginals are

no longer completely mixed 2.5. Performing local processing on both

sides could reveal greater values of p for which qutrit-Werner states and

ququart-Werner states are useful for teleportation.
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CONCLUSION

This paper discusses efficient variational quantum optimization of teleporta-

tion protocols by exploiting duality with dense coding, as well as a shallow

quantum circuit to test the capability of 3-level and 4-level Werner states as

entangled resources in teleportation protocols.

The main results include demonstrations of surpassing the optimal theo-

retical fidelity of the standard teleportation protocol with custom quantum

circuits for various Badziag et al. states, as well as a numerical demonstration

that qutrit-Werner states provide a nonclassical advantage in teleportation

when p < 2
7
and ququart-Werner states provide the same when p < 0.1875.

Future work includes the testing of entangled states other than the class

of Badziag et al. states and Werner states. Particularly, it is interesting to

test other families of states which satisfy the reduction criterion but are not

PPT.
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