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ABSTRACT
As the growth of LLM workloads significantly outpaces the growth

of GPU memory capacity, modern Retrieval Augmented Gener-

ation (RAG) frameworks consider CPU memory as a larger but

slower memory layer. The serving frameworks mainly take advan-

tage of the large CPU memory pool in two ways: (1) offloading

portions of the KV cache to CPU memory to support longer se-

quence lengths [10, 13, 15], (2) offloading external knowledge-base

KV caches [3, 12]. Offloading KV caches for reuse introduces an

interesting tradeoff: the advantage is reduced redundant compu-

tation, and the disadvantage is increased latency due to high I/O

bandwidth requirements when copying from host memory.

In this work, we implement the recently proposed strategies

which recompute a prefix of the KV cache and asynchronously load

the remainder to reduce generation latency[6, 8]. We explore their

accuracy and overheads. We show that the integer linear program

(ILP) approach from [6] can be faithfully simplified to a closed-

form approximation formula to avoid NP-hard optimization in the

pipeline. We also discover that the two-pointer approach from [8]

designed for KV caches stored on disk still has performance benefits

for KV caches in the CPU memory tier provided a sufficiently long

input sequence length.

1 INTRODUCTION
Retrieval Augmented Generation (RAG) enhances large language

models (LLMs) by incorporating external knowledge retrieved be-

fore generating a response. When a user inputs a query, the system

searches a database (e.g., a vendor store) for relevant context and

prepends the retrieved text to the query, forming the full input for

the LLM. This process enables LLMs to generate outputs that ex-

tend beyond their training data and incorporate current or domain-

specific information [3, 12]. However, incorporating this external

context significantly increases inference latency due to the rapid

growth of key-value (KV) caches, which store previously computed

token representations.

After an extended input is provided to the model, inference pro-

ceeds in two stages: prefill and decode. In the prefill stage, the

model computes query (Q), key (K), and value (V) representations

for every token in the input via linear projections and attention

operations. During the decode stage, the model sequentially gen-

erates new tokens by appending each newly generated token to

the sequence and computing new Q, K, and V representations only

for that token. Predicting each subsequent token requires attention

computations involving previously generated tokens, whose K/V

representations have already been computed. To avoid redundant

computation, these previously computed K/V representations are

stored in a KV cache [4, 7, 9, 17].

Large RAG workloads can quickly exceed GPU memory limita-

tions, especially on consumer-grade and edge devices designed for

cost and power efficiency. Not only does the KV cache grow due

to the increased sequence lengths, but also some RAG workflows

employ multiple KV caches to improve on cache hit rates. Con-

sequently, it becomes essential to offload KV caches from limited

GPU memory to the much larger CPU memory layer, necessitating

frequent data transfers between the two devices [1, 11, 14, 15]. For

example, InfiniGen [11] offloads most KV tokens to preserve model

performance in 1-million-token inference. CacheBlend [17] is a

recently proposed scheme that reduces inference delay through

effective cache reuse and optimized system design.

In this work, we explore and improve upon strategies to speed up

the acquisition of KV values for an input sequence by re-computing

the prefix during otherwise idle GPU cycles and copying the re-

mainder from host memory.We explore these partial recomputation

strategies:

Figure 1: KV cache partial recomputation strategies.

(1) Always recompute: Always recompute KV values.

(2) Always cache: Always store results in the GPU KV cache

and offload to CPU memory if GPU memory limit is ex-

ceeded.

(3) LP: Following the LP used by KVPR[6], find the recompute-

load split using linear programming.

(4) Cake[8]: Using a two-pointer approach, recompute KV

cache starting from the beginning of the sequence and I/O

load from the end, meeting in the middle.

(5) New: We derive a simple approximation for the ILP intro-

duced by KVPR[6], and improve on it by considering the

overhead of computing Q when acquiring K and V.

Our main contributions are improving the efficiency and ac-

curacy of the LP provided by KVPR[6] and demonstrating that

Cake[8], while designed for disk, improves CPU caching as well.
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2 RELATEDWORK
The transformer architecture[16] is at the heart ofmost application-

level optimizations such as this one. The transformer architecture

is illustrated in Figure 2. We implement a transformer in CUDA to

robustly test and measure the impact of various KV-optimization

policies on the time taken to pass to feedforward neural network.

In particular, we are interested in the acquisition of KV-values re-

quired to compute attention. Instead of computing these KV values

repetitively at every autoregressive step or experiencing the full

latency of CPU memory copies of these KV-values from the of-

floaded KV-cache, we explore hybrid approaches which overlay

asynchronous reads from host CPU memory with computing a

few of the KV-cache entries to reduce the overall latency between

receiving input embeddings and beginning attention computation

in the transformer block.

Recent works like KVPR[6] and Cake[8] look to dynamically

balance KV cache recomputation and data transfer based on system

profiling to address the PCIe bandwidth bottleneck present in I/O-

heavy approaches.

KVPR introduces an I/O-aware approach that partitions the

KV cache into re-computable and transferable segments. A profiler

first analyzes input and hardware characteristics to extract key

parameters like GPU compute speed and PCIe bus speed. Then, a

scheduler finds the optimized split point in the sequence using an

integer linear programming (ILP) solution. However, the scheduler’s

compile-time analysis did not account for runtime overhead, which

could significantly impact overall performance. Our contribution

is providing guidelines on how to efficiently utilize the ILP, an

efficient approximation, and improving upon the original ILP by

also Q-computation in addition to acquring K and V.

Cake targets the prefill stage by employing a bidirectional KV

cache loader that concurrently loads prefix cache from disk and re-

computes KV entries on the GPU block by block. It adapts to current

compute and I/O bandwidth conditions, eliminating the need for

manual tuning. However, this run-time split introduces additional

overhead. At the end of each block, operations like pointer checks,

stream stalls, and kernel relaunches cause unavoidable delays. Fur-

thermore, Cake was designed for cache on disk. We evaluate the

overheads of Cake on a CPU cache.

Additionally, KVPR and Cake do not cite GitHub repositories

to evaluate their techniques. So, we re-implement their techniques

as well as formulating our own modifications and best-practices.

3 PROPOSED METHOD
Our primary novel contributions are an analysis of the KVPR ILP,

an improved modification of it, and highly accurate closed-form

approximations from the ILP to avoid requiring an optimizer. First,

we note that executing the ILP on various sequence lengths is highly

redundant. This is because the sequence length term is common

to all terms in the maximization in 1, so the ILP actually is best

used as a one-time ratio-finder. Given a particular sequence length,

the optimal partition is some fraction of the sequence length. All

other sequence length inputs to the ILP will return different outputs

which are the same ratio to the input sequence length. Therefore, the

ILP only need be ran once with system configurations of 𝑣𝑐𝑜𝑚 and

𝑣𝑔𝑝𝑢 representing the communication and computation rates, after

which the extracted ratio can simply be multiplied to all incoming

sequence lengths, with the reasonable assumption that 𝑣𝑐𝑜𝑚 and

𝑣𝑔𝑝𝑢 don’t change significantly during autoregression. However,

we take this one step further and note that an ILP is not needed at

all, proposing an analytical method that obtains the same output

for a given sequence length.

Notably, we also implement the Cake algorithm designed for disk

offloading to explore the impact of this algorithm which expects

the KV-cache to be on disk to see relative speedups in a CPU-GPU

environment.

Figure 2: Self-attention within a transformer.

3.1 Analytical Method
Given the current sequence length 𝑠 at the 𝑖-th decoder layer, let 𝑙

be the recompute-load split point such that 0 ≤ 𝑙 ≤ 𝑠 . Let 𝑋 𝑖 [0 : 𝑙]
represent the activations that must first be transferred from CPU to

GPu in order to recompute KV values, and let 𝐾𝑖 [𝑙 : 𝑠] and𝑉 𝑖 [𝑙 : 𝑠]
represent the remaining KV cache to be loaded.

The LP problem from the KVPR[6] paper seeks to minimize the

total processing time as follows:

min

𝑙

(
𝑀𝑋 𝑖 [0:𝑙 ]
𝑣com

+max

(
𝑡𝑖
recomp

,
𝑀𝐾𝑉 𝑖 [𝑙 :𝑠 ]
𝑣com

))
s.t. 0 ≤ 𝑙 ≤ 𝑠, ∀𝑖 ∈ {1, . . . , 𝑛}

(1)

where

•
𝑀
𝑋𝑖 [0:𝑙 ]
𝑣𝑐𝑜𝑚

=
𝑏×𝑙×ℎ×𝑝
𝑣𝑐𝑜𝑚

= activation transfer time

• 𝑡𝑖𝑟𝑒𝑐𝑜𝑚𝑝 = 4×𝑏×𝑙×ℎ2
𝑣𝑔𝑝𝑢

= recomputation time
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•
𝑀
𝐾𝑉𝑖 [𝑙 :𝑠 ]
𝑣𝑐𝑜𝑚

=
2×𝑏×(𝑠−𝑙 )×ℎ×𝑝

𝑣𝑐𝑜𝑚
= KV cache loading time

• 𝑣𝑔𝑝𝑢 = GPU performance in FLOPs/sec

• 𝑣𝑐𝑜𝑚 = GPU-CPU PCIe bus speed in bytes/sec

• 𝑏, ℎ, 𝑝 = batch size, embedding dimension, and precision

Instead of solving the LP problem, we transform this into an

analytical solution by directly setting recomputation time equal to

loading time and rounding our final result to the nearest integer.

4𝑏𝑙ℎ2

𝑣𝑔𝑝𝑢
=

2𝑏 (𝑠 − 𝑙)ℎ𝑝
𝑣𝑐𝑜𝑚

Simplifying, we get that the optimal split point 𝑙∗ is

𝑙∗ = ⌊𝑐1
𝑠𝑝𝑣𝑔𝑝𝑢

2ℎ𝑣𝑐𝑜𝑚 + 𝑝𝑣𝑔𝑝𝑢
⌉

where 𝑐1 =
1

1.013 is an empirical normalizing constant.

However, these formulas do not include query recomputation

cost. After adding this to the total recomputation time, we get the

following formula:

𝑡𝑖𝑟𝑒𝑐𝑜𝑚𝑝 =
𝑁𝐾𝑉 𝑖 [0:𝑙 ] + 𝑁𝑄𝑖

𝑣𝑔𝑝𝑢
=

4𝑏𝑙ℎ2 + 2𝑏𝑠ℎ2
𝑣𝑔𝑝𝑢

Our new equations and optimal split point are as follows (with

empirically normalizing constant 𝑐2 =
1

1.026 ):

4𝑏𝑙ℎ2 + 2𝑏𝑠ℎ2
𝑣𝑔𝑝𝑢

=
2𝑏 (𝑠 − 𝑙)ℎ𝑝

𝑣𝑐𝑜𝑚

𝑙∗ = ⌊𝑐2
𝑠 (𝑝𝑣𝑔𝑝𝑢 − ℎ𝑣𝑐𝑜𝑚)
2ℎ𝑣𝑐𝑜𝑚 + 𝑝𝑣𝑔𝑝𝑢

⌉ (2)

3.2 Implementation Details
3.2.1 Cake Implementation. Due to no open source code, we im-

plement Cake from scratch. We began with a CPU prototype using

Python’s multiprocessing library to simulate parallelism and test

correctness. Transitioning to the GPU implementation introduced

several challenges, particularly in coordinating concurrent compute

and memory transfer operations.

In our CUDA version, we utilize two streams: one for compute

and one for data transfer. Each stream maintains its own asyn-

chronous queue for kernel launches and cudaMemcpyAsync calls.

To avoid race conditions or redundant work, we ensure that no

sequence block is submitted to both streams simultaneously. This

coordination is achieved using CUDA events: a compute event and

a copy event track the progress of each stream. New work is only

issued to a stream when its corresponding event signals that the

stream is ready (i.e., has completed previous tasks and its queue is

empty).

The pseudocode below outlines the core logic of our overlapped

QKV computation and cache loading approach:

3.2.2 Other Details. We also implement a RAG pipeline that re-

trieves context embeddings from the first 100k entries of the Wik-

iSnippets dataset[5] to augment the original input. We use this

pipeline to simulate the large input sequences obtained in RAG

workflows, justifying our setting.

Algorithm 1 qkv_cake: Overlapped QKV Computation and Cache

Loading

1: procedure qkv_cake
2: Initialize CUDA streams and events

3: Divide sequence into 𝑁 blocks

4: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑖𝑑𝑥 ← 0, 𝑙𝑜𝑎𝑑_𝑖𝑑𝑥 ← 𝑁 − 1
5: while 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑖𝑑𝑥 ≤ 𝑙𝑜𝑎𝑑_𝑖𝑑𝑥 do
6: if compute stream is ready then
7: if 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑖𝑑𝑥 = 0 then
8: Compute full 𝑄 from 𝑋 using linear_kernel

9: Compute 𝐾 , 𝑉 for block 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑖𝑑𝑥 using

linear_kernel
10: Record compute event

11: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑖𝑑𝑥 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑖𝑑𝑥 + 1
12: if copy stream is ready then
13: Copy𝐾 ,𝑉 block 𝑙𝑜𝑎𝑑_𝑖𝑑𝑥 from host to device using

cudaMemcpyAsync
14: Record copy event

15: 𝑙𝑜𝑎𝑑_𝑖𝑑𝑥 ← 𝑙𝑜𝑎𝑑_𝑖𝑑𝑥 − 1
16: Synchronize both streams

17: Destroy events

3.3 Evaluation Strategy
We evaluate our proposed closed-form solution, integer linear pro-

gram from KVPR and the two-pointer approach from Cake, by

measuring the time required to compute and load the Q, K, V ma-

trices in parallel. Additionally, we use NVIDIA Nsight Systems to

profile kernel activities and verify the compute/load parallelism.

4 RESULTS
We evaluate our approach on c240g5 nodes obtained for free from

CloudLab[2]. They have the following notable features with respect

to our experiments:

• NVIDIA Tesla P100 GPU, 12 GB memory

• PCIe 3.0 connectivity

• 192 GB ECC DDR4-2666 RAM

Our overall result is in the following plot.

Here, the dotted red line 𝑦 = 1 represents the latency of a pure-

cache approach at different sequence lengths. All improvements

are therefore below the dotted red line. There are many interesting

observations to make. First, the split point determined by the ILP

from KVPR is sub-optimal. This is not merely because of imple-

mentation details, but rather because of the overhead introduced

by computing Q. We require the computation of Q in addition to

the acquistion of KV, as Q and K are needed in the subsequent step

of self-attention. We profile the experiment on NVIDIA Nsight sys-

tems and include some descriptive insights in figures (cite figures).

We can clearly see that the overwhelming runtime bottleneck is

one linear kernel, which represents the computation of Q. As long

as computing Q takes longer from the KV cache, it doesn’t seem

to make much sense to partially recompute. If the requirement to

compute Q were removed, significantly "better" results would be

observed. However, we believe that computing Q is an important
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Figure 3: Time ratio of all compute methods over full QKV
load across varying sequence lengths. Error bars are small
and indicate the standard deviation over three experimental
runs.

prerequisite to following steps in self-attention, so we include it in

our experiments and benchmarking.

Furthermore, our improvement upon Cake by considering Q does

decrease latency. However, the improvement is still not significant

enough to beat a cache-only approach, and so our ultimate result is

that a pure-cache approach is preferred over these methods based

on this experiment.

On the other hand, Cake is actually quite performant for CPU

caching. As the sequence length increases, Cake starts to perform

slightly better than a pure-cache approach. Cake is attractive be-

cause there are no hardware configuration parameters required

by the algorithm. The simple two-pointer approach is extremely

portable, not requiring re-specification when porting between dif-

ferent hardware.

Figure 4: NVIDIA Nsight Systems result. Sequence Length =
500, Partial Recomputation = 0 tokens.

Finally, we also take a closer inspection of the analytical approx-

imations of the ILP and modified ILP by KVPR. Even though we

did not see a performance improvement over a cache-only strategy

using these approaches, it is still interesting to see that we could

provide a closed-form faithful approximation and avoid the NP-

hard problem of integer linear programming. The following two

plots show the percent error of our approximation compared to

the ILP’s results for different sequence lengths. We see virtually no

difference in the partition choice, and this is after the empirically

estimated constant percent shift appended to the analytical formula

described in Equation 2.

In conclusion, it appears that the latency of retrieving from CPU

memory is not significant enough to warrant partial recomputation

Figure 5: NVIDIA Nsight Systems result. Sequence Length =
500, Partial Recomputation = 10 tokens. This is less perfor-
mant than the iteration with 0 tokens for partial recompu-
tation, even though asynchronous memory copy and GPU
matrix multiplication are correctly simultaneous.

Figure 6: Error of our closed-form solution compared to the
integer linear program provided by KVPR.

Figure 7: Error of our modified closed-form solution com-
pared to our modification of the integer linear program from
KVPR.

with these strategies. Notably, this experiment emphasizes the re-

quirement of computing Q, whereas previous works seem to ignore

computing Q. In doing so, we see drops in performance. We still

provide closed form solutions for integer linear programs to reduce

theoretical complexity of such an approach, as well as demonstrate

that the Cake algorithm is advantageous for large enough sequence

lengths, while also being simple and extremely portable.
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