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ABSTRACT

As the growth of LLM workloads significantly outpaces the growth
of GPU memory capacity, modern Retrieval Augmented Gener-
ation (RAG) frameworks consider CPU memory as a larger but
slower memory layer. The serving frameworks mainly take advan-
tage of the large CPU memory pool in two ways: (1) offloading
portions of the KV cache to CPU memory to support longer se-
quence lengths [10, 13, 15], (2) offloading external knowledge-base
KV caches [3, 12]. Offloading KV caches for reuse introduces an
interesting tradeoff: the advantage is reduced redundant compu-
tation, and the disadvantage is increased latency due to high I/O
bandwidth requirements when copying from host memory.

In this work, we implement the recently proposed strategies
which recompute a prefix of the KV cache and asynchronously load
the remainder to reduce generation latency[6, 8]. We explore their
accuracy and overheads. We show that the integer linear program
(ILP) approach from [6] can be faithfully simplified to a closed-
form approximation formula to avoid NP-hard optimization in the
pipeline. We also discover that the two-pointer approach from [8]
designed for KV caches stored on disk still has performance benefits
for KV caches in the CPU memory tier provided a sufficiently long
input sequence length.

1 INTRODUCTION

Retrieval Augmented Generation (RAG) enhances large language
models (LLMs) by incorporating external knowledge retrieved be-
fore generating a response. When a user inputs a query, the system
searches a database (e.g., a vendor store) for relevant context and
prepends the retrieved text to the query, forming the full input for
the LLM. This process enables LLMs to generate outputs that ex-
tend beyond their training data and incorporate current or domain-
specific information [3, 12]. However, incorporating this external
context significantly increases inference latency due to the rapid
growth of key-value (KV) caches, which store previously computed
token representations.

After an extended input is provided to the model, inference pro-
ceeds in two stages: prefill and decode. In the prefill stage, the
model computes query (Q), key (K), and value (V) representations
for every token in the input via linear projections and attention
operations. During the decode stage, the model sequentially gen-
erates new tokens by appending each newly generated token to
the sequence and computing new Q, K, and V representations only
for that token. Predicting each subsequent token requires attention
computations involving previously generated tokens, whose K/V
representations have already been computed. To avoid redundant
computation, these previously computed K/V representations are
stored in a KV cache [4, 7, 9, 17].

Large RAG workloads can quickly exceed GPU memory limita-
tions, especially on consumer-grade and edge devices designed for
cost and power efficiency. Not only does the KV cache grow due
to the increased sequence lengths, but also some RAG workflows
employ multiple KV caches to improve on cache hit rates. Con-
sequently, it becomes essential to offload KV caches from limited
GPU memory to the much larger CPU memory layer, necessitating
frequent data transfers between the two devices [1, 11, 14, 15]. For
example, InfiniGen [11] offloads most KV tokens to preserve model
performance in 1-million-token inference. CacheBlend [17] is a
recently proposed scheme that reduces inference delay through
effective cache reuse and optimized system design.

In this work, we explore and improve upon strategies to speed up
the acquisition of KV values for an input sequence by re-computing
the prefix during otherwise idle GPU cycles and copying the re-
mainder from host memory. We explore these partial recomputation
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Figure 1: KV cache partial recomputation strategies.

(1) Always recompute: Always recompute KV values.

(2) Always cache: Always store results in the GPU KV cache
and offload to CPU memory if GPU memory limit is ex-
ceeded.

(3) LP: Following the LP used by KVPR[6], find the recompute-
load split using linear programming.

(4) Cake[8]: Using a two-pointer approach, recompute KV
cache starting from the beginning of the sequence and I/O
load from the end, meeting in the middle.

(5) New: We derive a simple approximation for the ILP intro-
duced by KVPR[6], and improve on it by considering the
overhead of computing Q when acquiring K and V.

Our main contributions are improving the efficiency and ac-
curacy of the LP provided by KVPR[6] and demonstrating that
Cake[8], while designed for disk, improves CPU caching as well.
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2 RELATED WORK

The transformer architecture[16] is at the heart of most application-
level optimizations such as this one. The transformer architecture
is illustrated in Figure 2. We implement a transformer in CUDA to
robustly test and measure the impact of various KV-optimization
policies on the time taken to pass to feedforward neural network.
In particular, we are interested in the acquisition of KV-values re-
quired to compute attention. Instead of computing these KV values
repetitively at every autoregressive step or experiencing the full
latency of CPU memory copies of these KV-values from the of-
floaded KV-cache, we explore hybrid approaches which overlay
asynchronous reads from host CPU memory with computing a
few of the KV-cache entries to reduce the overall latency between
receiving input embeddings and beginning attention computation
in the transformer block.

Recent works like KVPR[6] and Cake[8] look to dynamically
balance KV cache recomputation and data transfer based on system
profiling to address the PCle bandwidth bottleneck present in I/O-
heavy approaches.

KVPR introduces an I/O-aware approach that partitions the
KV cache into re-computable and transferable segments. A profiler
first analyzes input and hardware characteristics to extract key
parameters like GPU compute speed and PCle bus speed. Then, a
scheduler finds the optimized split point in the sequence using an
integer linear programming (ILP) solution. However, the scheduler’s
compile-time analysis did not account for runtime overhead, which
could significantly impact overall performance. Our contribution
is providing guidelines on how to efficiently utilize the ILP, an
efficient approximation, and improving upon the original ILP by
also Q-computation in addition to acquring K and V.

Cake targets the prefill stage by employing a bidirectional KV
cache loader that concurrently loads prefix cache from disk and re-
computes KV entries on the GPU block by block. It adapts to current
compute and I/O bandwidth conditions, eliminating the need for
manual tuning. However, this run-time split introduces additional
overhead. At the end of each block, operations like pointer checks,
stream stalls, and kernel relaunches cause unavoidable delays. Fur-
thermore, Cake was designed for cache on disk. We evaluate the
overheads of Cake on a CPU cache.

Additionally, KVPR and Cake do not cite GitHub repositories
to evaluate their techniques. So, we re-implement their techniques
as well as formulating our own modifications and best-practices.

3 PROPOSED METHOD

Our primary novel contributions are an analysis of the KVPR ILP,
an improved modification of it, and highly accurate closed-form
approximations from the ILP to avoid requiring an optimizer. First,
we note that executing the ILP on various sequence lengths is highly
redundant. This is because the sequence length term is common
to all terms in the maximization in 1, so the ILP actually is best
used as a one-time ratio-finder. Given a particular sequence length,
the optimal partition is some fraction of the sequence length. All
other sequence length inputs to the ILP will return different outputs
which are the same ratio to the input sequence length. Therefore, the
ILP only need be ran once with system configurations of v¢om and
Ugpu representing the communication and computation rates, after
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which the extracted ratio can simply be multiplied to all incoming
sequence lengths, with the reasonable assumption that vcop, and
vgpu don’t change significantly during autoregression. However,
we take this one step further and note that an ILP is not needed at
all, proposing an analytical method that obtains the same output
for a given sequence length.

Notably, we also implement the Cake algorithm designed for disk
offloading to explore the impact of this algorithm which expects
the KV-cache to be on disk to see relative speedups in a CPU-GPU
environment.
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Figure 2: Self-attention within a transformer.

3.1 Analytical Method

Given the current sequence length s at the i-th decoder layer, let
be the recompute-load split point such that 0 < I <'s. Let X![0 : []
represent the activations that must first be transferred from CPU to
GPu in order to recompute KV values, and let K*[[ : 5] and V¥[I : s]
represent the remaining KV cache to be loaded.

The LP problem from the KVPR[6] paper seeks to minimize the
total processing time as follows:

- Mxi{0.1] ; Mgvyifrs)
min — + max tremmp, _—
I Ucom Ucom 1)
st. 0<I<s, Vie{l,...,n}
where
Myi. . ) )
b % = bx;xﬂ = activation transfer time
X com com 2
® trecomp = % = recomputation time
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. Mgvi“:s] = ZXbX(;_l)XhX‘D = KV cache loading time
vgpu = GPU performance in FLOPs/sec
vcom = GPU-CPU PCle bus speed in bytes/sec

b, h, p = batch size, embedding dimension, and precision

Instead of solving the LP problem, we transform this into an
analytical solution by directly setting recomputation time equal to
loading time and rounding our final result to the nearest integer.

4blh®>  2b(s — Dhp

Ygpu Ucom

Simplifying, we get that the optimal split point I* is

Spngu

I'=l¢cg—m"——
2hvcom + pYgpu

where ¢; = ﬁ is an empirical normalizing constant.

However, these formulas do not include query recomputation
cost. After adding this to the total recomputation time, we get the
following formula:

Ngvijo] + Noi  4blh? + 2bsh?

Ygpu Ygpu
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Our new equations and optimal split point are as follows (with
empirically normalizing constant ¢z = Wl%):

4blh* + 2bsh®> _ 2b(s — hp

Ygpu Ucom

s(pvgpu — hvcom)

I =le
2hvcom + pogpu

@

3.2 Implementation Details

3.2.1 Cake Implementation. Due to no open source code, we im-
plement Cake from scratch. We began with a CPU prototype using
Python’s multiprocessing library to simulate parallelism and test
correctness. Transitioning to the GPU implementation introduced
several challenges, particularly in coordinating concurrent compute
and memory transfer operations.

In our CUDA version, we utilize two streams: one for compute
and one for data transfer. Each stream maintains its own asyn-
chronous queue for kernel launches and cudaMemcpyAsync calls.
To avoid race conditions or redundant work, we ensure that no
sequence block is submitted to both streams simultaneously. This
coordination is achieved using CUDA events: a compute event and
a copy event track the progress of each stream. New work is only
issued to a stream when its corresponding event signals that the
stream is ready (i.e., has completed previous tasks and its queue is
empty).

The pseudocode below outlines the core logic of our overlapped
QKYV computation and cache loading approach:

3.2.2  Other Details. We also implement a RAG pipeline that re-
trieves context embeddings from the first 100k entries of the Wik-
iSnippets dataset[5] to augment the original input. We use this
pipeline to simulate the large input sequences obtained in RAG
workflows, justifying our setting.
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Algorithm 1 gkv_cake: Overlapped QKV Computation and Cache
Loading

1: procedure QKV_CAKE

2: Initialize CUDA streams and events

3 Divide sequence into N blocks

4: compute_idx < 0, load_idx «— N — 1

5 while compute_idx < load_idx do

6 if compute stream is ready then

7 if compute_idx = 0 then

8 Compute full Q from X using linear_kernel

9: Compute K, V for block compute_idx using

linear_kernel

10: Record compute event

11: compute_idx < compute_idx + 1

12: if copy stream is ready then

13: Copy K, V block load_idx from host to device using
cudaMemcpyAsync

14: Record copy event

15: load_idx < load_idx — 1

16: Synchronize both streams

17: Destroy events

3.3 Evaluation Strategy

We evaluate our proposed closed-form solution, integer linear pro-
gram from KVPR and the two-pointer approach from Cake, by
measuring the time required to compute and load the Q, K, V ma-
trices in parallel. Additionally, we use NVIDIA Nsight Systems to
profile kernel activities and verify the compute/load parallelism.

4 RESULTS

We evaluate our approach on ¢240g5 nodes obtained for free from
CloudLab[2]. They have the following notable features with respect
to our experiments:

e NVIDIA Tesla P100 GPU, 12 GB memory
e PCle 3.0 connectivity
e 192 GB ECC DDR4-2666 RAM

Our overall result is in the following plot.

Here, the dotted red line y = 1 represents the latency of a pure-
cache approach at different sequence lengths. All improvements
are therefore below the dotted red line. There are many interesting
observations to make. First, the split point determined by the ILP
from KVPR is sub-optimal. This is not merely because of imple-
mentation details, but rather because of the overhead introduced
by computing Q. We require the computation of Q in addition to
the acquistion of KV, as Q and K are needed in the subsequent step
of self-attention. We profile the experiment on NVIDIA Nsight sys-
tems and include some descriptive insights in figures (cite figures).
We can clearly see that the overwhelming runtime bottleneck is
one linear kernel, which represents the computation of Q. As long
as computing Q takes longer from the KV cache, it doesn’t seem
to make much sense to partially recompute. If the requirement to
compute Q were removed, significantly "better" results would be
observed. However, we believe that computing Q is an important
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Figure 3: Time ratio of all compute methods over full QKV
load across varying sequence lengths. Error bars are small
and indicate the standard deviation over three experimental
runs.

prerequisite to following steps in self-attention, so we include it in
our experiments and benchmarking.

Furthermore, our improvement upon Cake by considering Q does
decrease latency. However, the improvement is still not significant
enough to beat a cache-only approach, and so our ultimate result is
that a pure-cache approach is preferred over these methods based
on this experiment.

On the other hand, Cake is actually quite performant for CPU
caching. As the sequence length increases, Cake starts to perform
slightly better than a pure-cache approach. Cake is attractive be-
cause there are no hardware configuration parameters required
by the algorithm. The simple two-pointer approach is extremely
portable, not requiring re-specification when porting between dif-
ferent hardware.
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Figure 4: NVIDIA Nsight Systems result. Sequence Length =
500, Partial Recomputation = 0 tokens.

Finally, we also take a closer inspection of the analytical approx-
imations of the ILP and modified ILP by KVPR. Even though we
did not see a performance improvement over a cache-only strategy
using these approaches, it is still interesting to see that we could
provide a closed-form faithful approximation and avoid the NP-
hard problem of integer linear programming. The following two
plots show the percent error of our approximation compared to
the ILP’s results for different sequence lengths. We see virtually no
difference in the partition choice, and this is after the empirically
estimated constant percent shift appended to the analytical formula
described in Equation 2.

In conclusion, it appears that the latency of retrieving from CPU
memory is not significant enough to warrant partial recomputation
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Figure 5: NVIDIA Nsight Systems result. Sequence Length =
500, Partial Recomputation = 10 tokens. This is less perfor-
mant than the iteration with 0 tokens for partial recompu-
tation, even though asynchronous memory copy and GPU
matrix multiplication are correctly simultaneous.

KVPR Integer Linear Program versus closed form solution
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Figure 6: Error of our closed-form solution compared to the
integer linear program provided by KVPR.

Modified KVPR Integer Linear Program versus closed form solution
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Figure 7: Error of our modified closed-form solution com-
pared to our modification of the integer linear program from
KVPR.

with these strategies. Notably, this experiment emphasizes the re-
quirement of computing Q, whereas previous works seem to ignore
computing Q. In doing so, we see drops in performance. We still
provide closed form solutions for integer linear programs to reduce
theoretical complexity of such an approach, as well as demonstrate
that the Cake algorithm is advantageous for large enough sequence
lengths, while also being simple and extremely portable.
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