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1 Introduction

As the growth of LLM workloads significantly outpaces
the growth of GPU memory capacity, modern model serv-
ing frameworks consider CPU memory as a larger but
slower memory layer. The serving frameworks take ad-
vantage of the large CPU memory pool in many different
ways, including: (1) offloading part of the model weights
to support large models [1, 3, 18], (2) offloading part of
the KV cache for longer sequence length [11, 13, 18], (3)
offloading the KV cache of external knowledge databases
for RAG models [7, 12]. The frameworks need to migrate
memory in between CPU and GPU: it copies memory to
GPU before computation starts and moves unused mem-
ory to CPU when GPU memory is limited. The mem-
ory movement requires direct memory access (DMA) to
read/write host memory.

Modern CPUs employ the Input-Output Memory Man-
agement Unit (IOMMU) to protect host memory from
DMA accesses of malicious or buggy IO devices and
drivers. IOMMU enforces protection through its trans-
lation process. With IOMMU enabled, the operating
systems allocate IO virtual addresses (IOVA) which will
be used by devices to initiate DMA to host memory. For
each DMA, IOMMU, sitting at the root of PCIe bus, uses
IO page table to translate IOVA to the physical address of
host memory. The physical address points to data that the
devices are allowed to access. The translation results also
contain access permissions of given IOVAs. If translation
or permission checks fail, DMA accesses will not happen.
Similar to TLB which caches MMU’s translation result,
IOTLB is deployed to cached IOMMU’s translation result.
In other words, every IOTLB miss leads to an IO page
table walk.

However, memory safety does not come free. Recent
research has found that providing strict memory protec-
tions with IOMMU naively may degrade the performance
of the application by up to 60% [15, 17]. To provide
the strongest safety property (commonly referred as strict
mode), OS unmaps IOVA and invalidates its IOTLB im-
mediately after usage of each IO virtual address (IOVA),
Such an operation leads to non-trivial performance over-

head and may degrade application performance signifi-
cantly. The performance impact is exacerbated in virtu-
alized cases, since nested IO page table walks are more
expensive, and frequent VM exits may also happen. Ap-
plications such as Memcached and Nginx suffer from
up to 97% throughput degradation while enforcing strict
safety properties [4, 19].

Existing studies focus on performance of the network
workload, where the NIC performs frequent DMA opera-
tions. However, the IO memory protection’s performance
impact for AI workloads on GPU is poorly understood.
We suspect that AI workloads which offload memory to
the CPU or need to frequently exchange data between the
CPU and GPU will suffer from the overhead of IOMMU
protection. To our best knowledge, no existing litera-
ture measures the overhead of IOMMU protection for AI
workloads on GPU.

We tested three types of workloads that may be im-
pacted IOMMU: KV cache offloading, model weights
offloading, and RAG. We found that KV cache offloading
suffers from up to 10% decode stage throughput drop
when IOMMU is turned on. The prefill stage is not im-
pacted. We also conclude that IOMMU has little impact
on model weights offloading and RAG.

We profiled the performance of cudaMemcpy, the cuda
runtime API that initiates CPU-to-GPU memory transfer.
We found that IOMMU introduced up to 17.5% overhead
at region size in between 212 to 214 region sizes. The
impact of IOMMU reduces at small or larger regions. We
also traced the GPU kernel module [14] to pinpoint the
data path for CPU-GPU data migration.

To this end, the primary goal of our work is to:

• Identifying which types of AI workload will be af-
fected by IOMMU and quantify their impact.

• Quantify how cudaMemcpy will be affected by
IOMMU.

• Understand the data path for CPU-GPU data migra-
tion.
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2 Background and Motivation

Offloading to CPU is necessary Offloading to the CPU
is necessary because GPU memory alone cannot store
both the static model weights and the dynamic KV cache
required for modern LLM inference. The rapid growth
of model sizes and context windows quickly outpaces
available GPU memory [11, 13, 18]. Moreover, consumer-
grade and edge devices (designed for cost and power
efficiency) come with significantly less GPU memory,
making CPU offloading essential for hosting LLMs [1,
11, 13, 18].

The GPU memory wall is illustrated by FlexGen [18]
in the context of training a 175B parameter model. GPT-
175B requires 325GB just to load its weights, meaning
that an all-GPU system would need at least five A100
GPUs (80GB each). To overcome this expensive re-
quirement, FlexGen offloads both model weights and KV
cache data across the GPU, CPU, and disk. With this ap-
proach, GPT-175B can be run on a single consumer-grade
NVIDIA T4 (16GB), achieving a 25! reduction in expen-
sive GPU memory usage. Similarly, Superpipeline [1]
swaps entire model layers between the CPU and GPU, al-
lowing start-of-the-art models like Stable Diffusion to run
on graphics cards with as little as 24GB of GPU RAM.

In addition to addressing large model sizes, CPU of-
floading is particularly motivated by the rapidly growing
KV cache, which scales with the sequence length and
batch size. HeadInfer [13] offloads all but one head of
the KV cache to CPU memory, enabling 4-million-token
inference with an 8B model on a single consumer GPU
with 24GB memory (e.g., NVIDIA RTX 4090). Similarly,
InfiniGen [11] offloads most KV tokens and selectively
retains important KV tokens from multiple heads based
on a lightweight rehearsal of the next attention computa-
tion. InfiniGen preserves model performance in 1-million-
token inference with an 8B model on a single consumer
GPU with 48GB memory.

These offloading strategies require frequent CPU–GPU
data exchanges. For example, Superpipeline is three times
slower than an all-GPU baseline due to the additional data
transfers, and HeadInfer saturates the PCIe bus throughout
its execution. In every case, extra CPU–GPU traffic is
traded for significantly lower GPU memory usage.

IOMMU protection and its performance overhead

While CPU offloading technique is becoming more and
more popular, the safety concern for DMA operations,
the most important technique to enable data migrations
between CPU and devices, is receiving more attention.
To protect against malicious or buggy devices and de-
vice drivers, modern servers introduce IOMMU. Without
IOMMU, devices directly access CPU physical memory,
which may lead to information leak or system corruption.

IOMMU protects memory by forcing the device to use
IO virtual addresses (IOVA) and checking the access per-
mission for the hardware’s DMA access [9]. The IOVA is
allocated by the kernel; it is mapped to specific physical
addresses through the IOMMU page table.

The safety benefits provided by IOMMU may come
with performance overhead. As we discussed, in bare
metal setup, IOMMU may degrade performance by up
to 60%. The performance drop is primarily attributed
to IOMMU translation overhead. The severest perfor-
mance drop happens under strict IOMMU protection pol-
icy where IOTLB is flusehd immediately after DMA trans-
actions finish. To increase the reusability of IOTLB en-
tries, linux’s default IOMMU setup runs with lazy mode:
IOTLB invalidation requests are queued until it reaches a
max limit of 256 or every 10ms.

While many works characterize performance impact
of IOMMU on network workloads on NICs, we find lit-
tle literature talks about how AI workloads on GPU be-
have with different IOMMU setups. The complication of
IOMMU may directly impact DMA transaction rates.

3 Performance Measurement Setup

We plan to compare the performance of the following
microbenchmarks and AI workloads on the following
setups.

3.1 Workloads

Weights offloading llama.cpp [3]
llama.cpp is an LLM inference framework that supports a
wide range of hardware, from edge devices to the cloud.
It has an option to offload some model layers to CPU.
Specifically, higher layers reside on the GPU while lower
layers are offloaded to CPU memory. The computation of
CPU layers is also executed by the CPU. Once computed,
the intermediate activations are transferred from CPU
memory to GPU memory to be processed by GPU layers.

llama.cpp comes with three types of benchmarking
workloads: prompt process (pp), text generation (tg), and
prompt process + text generation (pg).

KV cache offloading FlexGen [18] and vLLM [10]
KV cache improves LLM inference performance by stor-
ing all preceding tokens’ keys and values in memory to
avoid redundant computation. However, the KV cache
scales with the output sequence length and often con-
sumes even more memory capacity than the model weight.
To alleviate the growing issue of the KV cache size due
to the demand for longer sequence lengths, [11, 18] pro-
posed to offload the KV cache to CPU memory.
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FlexGen [18] optimizes the offloading strategies by con-
sidering computation schedule, tensor placement, com-
putation delegation, as well as compressing the model
weights and KV cache. vLLM employs the PagedAtten-
tion attention algorithm [10] which divides the request’s
KV cache into blocks, each of which can contain the atten-
tion keys and values of a fixed number of tokens. vLLM
offloads the KV cache to CPU memory when GPU does
not have sufficient memory.

RAG Retrieval-Augmented Generation (RAG [7, 12,
16]) enhances large language models (LLMs) by incorpo-
rating external knowledge retrieved before generating a
response. When a user inputs a query, the system searches
a database (e.g., a vendor store) for relevant context and
prepends the retrieved text to the query, forming the full
input for the LLM. The model then computes key (K) and
value (V) matrices for this extended input.

RAG, however, introduces CPU-GPU data transfers
as the tokenized external context needs to be moved
to the GPU for integration into the LLM’s processing
pipeline. To quantitatively assess the impact of this CPU-
GPU input/output (I/O) overhead introduced by RAG, we
adopted a synthetic RAG dataset, musique_s, provided by
CacheBlend [20]. Using this dataset, we benchmarked the
performance of the Mistral 7B model [2, 8] to specifically
analyze the latency associated with these data transfers
within a RAG-based inference scenario.

Micro benchmarks on cudaMemcpy AI workloads
copy data between CPU and GPU devices with CUDA
API call cudaMemcpy. It copies data synchronously by
issuing DMAs with specified directions . When IOMMU
is turned off, the DMA operates on physical addresses
directly. When IOMMU is turned on, the DMA oper-
ates on IOVA pre-allocated by CUDA driver and pays
overhead of IOMMU translations. Since cudaMemcpy
is a synchronous API, most AI workloads choose its
asynchronous version cudaMemcpyAsync to achieve bet-
ter performance. cudaMemcpyAsync also issues DMA
requests, so it will also be impacted by IOMMU. In
this paper, we present our results to investigate both
IOMMU’s impact on both synchronous and asynchronous
cudaMemcpy.

3.2 Environments

We focus on consumer-grade GPU with limited GPU
memory. Under such a scenario, offloading to CPU be-
comes a natural resort. We have two setups.

• P100 We use the Cloudlab machine with P100 GPU
(12 GB memory). It comes with CPU memory of
192GB. The CPU is Intel Xeon Silver 4114.

• GTX 5080 The cloudlab machine has limited avail-
ability; plus, the P100 GPU is too old to support
open-source GPU kernel modules [14]. We assem-
bled a workstation by ourselves. It has a GeForce
RTX 5080 GPU, Intel i7-14700F CPU, and 128GB
memory. The CPU and GPU are connected with
PCIE 5.0.

We measured the performance using GTX 5080 unless
particularly noted since it supports the open source kernel
modules.

• iommu=off
No protection. Devices access physical memory
directly. Kernel functions handles mapping request
by directly returning the physical addresses.

• iommu=on, strict invalidation policy
For strict policy, IOTLB is invalidated immediately
after each DMA access finishes. It enforces the
strictest safety guarantee while leading to the most
significant performance impact. In this paper, we
focus on strict policy.

• iommu=on, lazy invalidation policy
For lazy policy, the default of Linux, the IOTLB
invalidation request is submitted to an invalidation
queue; the IOTLB is flushed periodically or when-
ever the queue is full. The lazy policy leads to larger
chances of IOTLB reuse at the cost of a potentially
longer attack window.

4 Measurement Results

We found that not all AI workloads will be affected by
IOMMU. Workloads like model weight modeling and
RAG are almost not influenced by IOMMU. However,
workloads like KV Cache offloading will be significantly
influenced by IOMMU policy. We found KV cache of-
floading will suffer from throughput drop of 6-11% when
IOMMU is turned on.

4.1 Workloads with substantial impact

4.1.1 KV Cache Offloading with FlexGen

We quantitatively evaluated the influence of different
IOMMU policies on the KV cache offloading system
by analyzing the throughput of the prefill and decode
phases. We ran Flexgen with facebook/opt-1.3b model [5,
21] with both prefill and token generation length of 1024.
We tested the worst case scenario with 100% KV Cache
offloaded to CPU, and 100% model weights plus activa-
tion on GPU. We found that when turned on IOMMU
with strict policy, decode throughput dropped by 9.9%
compared to when IOMMU is turned off. In contrast,
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Figure 1: Decode throughput for different KV cache of-
floading percentages.

prefill throughput has smaller difference of 3.6% between
IOMMU is strict and off. We explain the difference with
different workloads characteristics of prefill and decode
phases. prefill phase is computation bounded, while de-
code phase is memory bounded. More frequent CPU to
GPU data migrations occur in deocde phase.

To further investigate this, we conducted two experi-
ments with varying KV cache offloaded percentage and
token generation length.
Impact of Varying KV Cache CPU Offloading Per-

centages. In this experiment, we fixed the input and
output token lengths at 1024 and 512, respectively, and
systematically increased the proportion of the KV cache
offloaded to the CPU from 0% to 90%. As illustrated
in Fig. 1 for the facebook/opt-1.3b model, the decode
throughput decreased for both iommu-off and iommu-
strict configurations as more KV cache was moved to
the CPU. Notably, the iommu-strict policy consistently
demonstrated a performance degradation compared to
iommu-off across different offloading percentages. The
degradation is 9.51% on average with minimum of 8.04%
and maximum of 10.8%. In contrast, the impact of the
IOMMU policies on the prefill phase throughput was less
pronounced in our experiments. Specifically, the decode
throughput under iommu-strict was either comparable to
or slightly worse than iommu-off, with a performance
difference of less than 4%.
Impact of Varying Output Token Generation Lengths.

For each generated token, CPU-GPU I/O operations occur
if the KV cache is even partially offloaded to the CPU.
Consequently, longer generation lengths, requiring more
frequent CPU-GPU data transfers, may reduce decoding
throughput. Understanding the impact of the IOMMU pol-
icy on this relationship is crucial. As illustrated in Fig. 2
for the facebook/opt-1.3b model (with 100% KV cache

Figure 2: Decode throughput vs. token generation length

offloaded to the CPU), the decode throughput for both
iommu-off and iommu-strict policies decreased as the
output token generation length increased. Notably, a con-
sistent performance degradation of approximately 8.29%
- 11.02%, with an average of 9.95%, in decode throughput
was observed with the iommu-strict policy compared to
iommu-off across different generation lengths. For the
prefill phase, we observed some performance degradation
ranging from 1% to 6%; however, no clear trend was
discernible within our experimental results.
CudaMemcpy Analysis We profiled the performance of
CudaMemcpy calls Flexgen workloads with Nsight Sys-
tems. We ran facebook/opt-1.3b with input token length
of 1024 and generation length of 512 with 100% KV
cache offloaded to CPU. We focused on Host-to-Device
memory transfer since it take 99.1% of total transfer time.
We showed the cumulative distribution functions (CDFs)
of transfer time in Figure 3. Most memory transfers take
place at a magnitude of 107 bytes and 106 nanoseconds.
We found that IOMMU strict policy slowed down the
memory transfer by 15% which led to the throughput
drop in decode phase.

Flexgen with Larger Model To investigate the gen-
eralization of our findings, we further applied the same
experimental procedures to the larger facebook/opt-6.7b
model [6]. For the varying KV cache experiment, we
were required to offload at least 60% of the KV cache to
the CPU to avoid out-of-memory (OOM) errors. De-
spite this constraint, we observed a similar trend of
consistent performance degradation in both sets of ex-
periments. However, the performance gap between
the iommu-off and iommu-strict policies was smaller
for the 6.7 billion-parameter model—5.9%–7.0% in the
KV-cache CPU offload experiment and 4.8%–9.4% in
the token generation length experiment—than for the 1.3
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Figure 3: CDF plot for Host-to-Device memory transfer
time of Flexgen running opt-1.3b.

billion-parameter model, which averaged at 10% in both
experiments.

4.1.2 KV Cache Offloading with vLLM

We further evaluated the impact of IOMMU policies on
the state-of-the-art serving framework, vLLM. We used
the Llama-3.2-3B model with the max model length of
4800. We configured the vLLM to use the CPU memory
as the swap space, so that it offloads the KV cache to
CPU memory when GPU memory is not enough. We
used the sharegpt dataset as the serving benchmark.
The measurement is run on the GTX 5080 with 70% GPU
memory utilization.

We found that the strict IOMMU policy increases the
inter-token latency by 2.84% (from 34.96ms to 35.95ms)
comparing to IOMMU set to off. However, the IOMMU
policies do not have significant impact the time-to-first-
token latency which is consistent with our finding that
prefill stage performance is not impacted by IOMMU. Our
future plan is to further investigate the impact of IOMMU
policies on vLLM with different models, model length,
output token length, and the amount of GPU memory
available.

4.2 Workloads without substantial impact

4.2.1 Model Weights Offloading

To evaluate the impact of IOMMU policy on the model
weights offloading strategy in llama.cpp, we bench-
marked the throughput of the prefill and decode stages.
Using the llama-bench tool provided with llama.cpp,
we profiled an 8-bit quantization of Llama-3.1-8B and
a 4-bit quantization of Phi-4-14B. For both models, one
layer is offloaded to the CPU, while the remaining layers
reside on the GPU. All experiments were conducted on
the P100 setup.

Figure 4: CDF plot for Host-to-Device memory transfer
time of Llama.cpp running Phi-4.

Figure 5: CDF plot for Host-to-Device memory transfer
size of Llama.cpp running Phi-4.

Table 1 reports the mean and standard deviation across
five runs with a prompt length of 512 and 128 generated
tokens. For both models and both stages, the throughput
differences fall within the standard deviation, indicating
that the IOMMU policy has negligible impact.

To understand the underlying reasons for this observa-
tion, we profiled Host-to-Device memory transfers during
the decode stage of Phi-4 using Nsight Systems. The
cumulative distribution functions (CDFs) of transfer time
and transfer size are shown in Figure 4 and Figure 5, re-
spectively. Transfer events can be categorized into two
groups based on size: those below 105 bytes, correspond-
ing primarily to activation vectors transferred in each
decoding iteration, and those above 107 bytes, correspond-
ing mainly to model weights transferred once at the start
of benchmarking. The primary difference between the
CDFs arises from transfers around 104 bytes, which are
associated with activation data.

A deeper inspection of the profiling data reveals that
strict IOMMU configuration slows down model weight
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Model Stage #Tokens IOMMU=off IOMMU=on, strict

Llama-3.1-8B prefill 512 468.95 ± 0.90 468.70 ± 1.31
decode 128 21.68 ± 0.19 21.77 ± 0.18

Phi-4-14B prefill 512 210.31 ± 0.33 210.32 ± 0.33
decode 128 17.22 ± 0.13 17.20 ± 0.37

Table 1: Throughput (tokens/s) comparison under different IOMMU configurations. Throughput is displayed in the
format mean ± std.

transfers by 2% and activation transfers by 6%. However,
weight transfers occur only once during setup and do
not affect inference throughput. In the model weight of-
floading strategy used by llama.cpp, GPU-resident layers
are transferred from CPU to GPU memory at initializa-
tion. During inference, CPU-resident layers remain in
CPU memory and are computed on the CPU, while GPU-
resident layers remain on the GPU and are processed
there. Activation transfers take approximately 6 µs per
token, accounting for only 0.01% of the total decoding
time. This impact is negligible.

In conclusion, IOMMU configuration has no substan-
tial effect on the performance of model weights offload-
ing in llama.cpp. Therefore, we recommend enabling
IOMMU to benefit from its memory protection features
at little or no performance cost.

4.2.2 RAG

To evaluate the impact of the IOMMU policy on RAG
systems, we assessed the Mistral-7B-Instruct-v0.1 model
[2] on the musique_s.json dataset from CacheBlend [20].
This dataset comprises 150 queries with input tensor sizes
ranging from 47,824 to 63,184 bytes.

The total inference time is dominated by the token gen-
eration process, which operates on the scale of seconds,
while the memory transfer times occur in the scale of
hundreds of microseconds. Consequently, the impact of
different IOMMU policies on the end-to-end inference
time is minimal (<0.1%). However, the cumulative distri-
bution function (CDF) of memory transfer times (Fig. 6)
reveals a more nuanced effect. The intersection of the
CDF curves for iommu-off and iommu-strict indicates a
non-trivial influence of the IOMMU policy on memory
transfer latency, despite its limited impact on the overall
inference duration.

4.3 Microbenchmarks

In this section, we discuss four microbenchmarks used
to understand the performance impact of the IOMMU in
controlled environments.

Figure 6: CDF plots for RAG system with iommu-off and
iommu-on (strict).

• Repeated Single Region Transfer A single region
of CPU memory is repeatedly copied to a single re-
gion of GPU memory 256 times. The entire process
is looped over 100 times for consistency with the
following microbenchmarks.

• Sequential Contiguous Transfers 256 contiguous
regions of CPU memory are sequentially copied to
a single region of GPU memory. The entire process
is looped over 100 times to capture the impact of
IOTLB speeding up translation.

• Random CPU Transfers 192 fragmented regions of
CPU memory are randomly copied to a single region
of GPU memory. The fragmentation is obtained by
randomly selecting 75% of 256 contiguous regions
to copy from in a random order. The entire process
is looped over 100 times, updating the random se-
lection in each iteration, to capture the impact of
IOTLB speeding up translation.

• Fully Random Transfers 192 fragmented regions
of CPU memory are randomly copied to 192 frag-
mented regions of GPU memory. The entire process
is looped over 100 times.

Latency Model Unfortunately, existing profiling tools
cannot profile the breakdown inside cudaMemcpy opera-
tions since the cuda API implementation is closed source.
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To help us better understand the measured results, we
model latency in each microbenchmark as follows. When
the IOMMU is enabled, then the total latency Ttotal,on is
given by the sum of three components:

Ttotal,on = TDMA +Tother +TIOMMU

• TDMA: Latency from direct memory access between
GPU and CPU memory.

• Tother: Mixed overheads unrelated to DMA or
IOMMU operations, such as kernel launches CUDA
runtime overhead.

• TIOMMU: Latency introduced from IOMMU op-
erations such as address translations and IOTLB
lookups.

On the other hand, when the IOMMU is disabled, then
the total latency is simplified to:

Ttotal,off = TDMA +Tother

To isolate the performance impact of the IOMMU, we
compare Ttotal,off with Ttotal,on. In additon to comparing
the raw values, we also look at the latency ratio:

IOMMU Overhead % = (
Ttotal,on

Ttotal,off
→1)↑100%

We evaluated the four microbenchmarks for both
synchronous cudaMemcpy() and asynchronous
cudaMemcpyAsync().

4.3.1 cudaMemcpy results

Figure 7: IOMMU Overhead for CudaMemcpy with Dif-
ferent Region Sizes
Figure 7 shows the IOMMU overhead, normalized to
the memory copy time of the IOMMU-off case. For all
the access patterns, the plots exhibit an "arch" shape:
the IOMMU overhead remains consistently low for small
cudaMemcpy operations involving small regions, peaks as
region sizes grow beyond a page, and gradually declines
as the region size continues to increase.

Small region sizes (< 212
bytes) The IOMMU overhead

hovers around 1%. This is expected, as the small work-
ing set does not stress the IOTLB, resulting in minimal
translation overhead.

Medium region sizes (212
–213

bytes) The overhead
rises sharply. At this scale, each cudaMemcpy likely in-
curs at least one IOMMU translation, amplifying the
TIOMMU the region size grows. Meanwhile, the TDMA
and Tother stay relatively stable. In Figure 8, we show
the memory transfer time for different region size nor-
malized to the time taken by smallest region (26) bytes
when IOMMU=off. Since different access patterns show
the same trend, we show the plot from "Sequential Con-
tiguous Transfers" as a example With IOMMU = off, the
memory transfer time for the 213 region size is only 1.25x
of the memory transfer time for 26 region size.

Large region sizes (>= 214
bytes) The overhead grad-

ually decreases. With larger regions, TDMA increase ex-
ponentially with region size as shown in Figure 8. The
cost of IOMMU translation becomes amortized over data
transfer time, leading to a lower relative overhead.

The peak in IOMMU overhead is skinniest for repeated
single region transfers because this microbenchmark have
the highest IOTLB cache hit rate. Note that the peak is
at 213, which is the first data point greater than the single
page size 212. The peak diminishes back to 0 for large
region sizes because TDMA begins to dominate the total
latency due to larger overall memory size.

Limitation in Analysis Note that Figure 8 is combi-
nation of TDMA and Tother. We wish to profile TDMA sep-
arately but we didn’t find any open tool to anlayze the
pure the time for each DMA transfer. We also could have
better understanding of TIOMMU by profiling the IOTLB
miss rates and IOMMU cache miss rates following the
methodology in [17]. However, IOMMU performance
registers are only avaible on server grade CPU, where our
5080 setup does not have it.

4.3.2 cudaMemcpyAsync results

We measured the normalized IOMMU overhead for four
different access patterns over region sizes from 26 to
224. cudaMemcpyAsync copy data asynchronously in the
background. We launched all 256 cudaMemcpyAsync
calls at one time, and recorded the time taken to finish all
of them as the time required to transfer. We showed our
plot in Figure 9.

We found that, in general, the asynchronous results fol-
low the same pattern of "arch" shape of the synchronous
results. IOMMU overhead increases at region sizes from
212 to 214 since TDMA is not the dominate time. However,
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Figure 8: CudaMemcpy latency normalized to region size
(26) for access pattern: Sequential Contiguous Transfers.
Despite the variability shown in Figure 7, we observe
minimal variability here, so we show result from one
access pattern as example.

Figure 9: IOMMU Overhead for CudaMemcpyAsync
with Different Region Sizes

as region size grows larger, TDMA dominates the memory
transfer time, so IOMMU overhead gradually decays.

In asynchronous case, the maximum peak has a higher
IOMMU overhead of 17.5% compared to 10% in the
synchronous case. This can be explained by the differen
in workload pattern: asynchronous memory copy requests
are submitted in burst ,but the synchronous requests are
submitted one by one. In async case, IOMMU translation
requests may be blocked at IOMMU hardware.

We also found that "Repeated Single Region Transfer"
did not follow the "arch" shape. We are still working to
check the reason One hypothesis is that bursty memory
copy requests might be better handled by IOTLB where
the requests have higher possibility of IOTLB hit. The
other hypothesis is that the cuda runtime (currently closed
source) might detect that we are copying to a GPU re-
gion from the same CPU region repeatedly, so it might
optimize by only copying the final results.

Note that for small region sizes, asynchronous mem-
cpy is far less predictable, especially the access patterns

"Sequential Contiguous Transfers" and "Random CPU
Transfers" at region size smaller than 28 bytes. We suspect
that it might be caused by the synchronization overhead
where these two workloads are copying to a single GPU
region within one page from multiple CPU region. The
cuda runtime may need more time to make synchronize
the final results.

4.4 Code Path Understanding

Figure 10: Code Path for CPU-GPU Communication
Figure 10 illustrates the memory allocation and deal-

location code path for CUDA application that involves
CPU-GPU memory communication. It contains user-level
cuda source files that calls the CUDA runtime API. The
CUDA runtime is closes source, but it will call the open
source the Linux kernel via a CUDA kernel module.

When a CUDA application allocates CPU memory and
plans to transfer the data to GPU, it requests memory
via cudaMallocHost call. The CUDA runtime forwards
this request to a kernel module. The kernel module, in
collaboration with the Linux kernel, allocates physical
pages (pfns) and sets up a contiguous IOVA (IO Virtual
Address) space. The module then maps this contigu-
ous IOVA range to the allocated pfns, enabling GPUs
to access the host memory with IOVA via the IOMMU
subsystem. Note that the physical pages may be noncon-
tiguous, but the kernel module enforces contiguous IOVA
for performance reason.

When the memory is no longer needed (e.g., via
cudaFreeHost()), the process reverses: the IOVA map-
pings are freed first, followed by the release of the associ-
ated physical pages.

We emphasize that the building and removal of IOVA
mappings do not happen at cudaMemcpy time. In fact, we
did not find cudaMemcpy enter the kernel module. Such
design avoids the overhead of entering kernel space for
cudaMemcpy. The memory copy can be accomplished
via IOVA mappings set up at allocation time, and such
mapping may be reused multiple times.
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5 Conclusion and Future Work

In this work, we conducted the first detailed study of the
performance impact of IOMMU protections on AI work-
loads involving GPU–CPU memory transfers. While prior
research has primarily focused on network devices, our
findings highlight that certain LLM inference scenarios—
especially those involving KV cache offloading—suffer
up to 10% throughput degradation under strict IOMMU
policies. We further identify the region sizes and trans-
fer patterns that exacerbate IOMMU-induced latency,
and profile the behavior of both synchronous and asyn-
chronous cudaMemcpy operations.

Future Work. We plan to extend this work by:

• Investigating more on the impact of IOMMU on
modern serving framework like vLLM.

• Profiling IOTLB miss rates and IOMMU cache miss
rates to more precisely isolate the cost of translation.

• Exploring alternative designs for safe DMA that re-
duce IOMMU overhead, such as batching, caching
optimizations, or static mappings for persistent
buffers.

We hope our findings motivate further systems and
architecture co-design to balance memory safety and per-
formance in AI accelerators.
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